CSE 312 Foundations of Computing II

Lecture 9: Random Variables and Expectation

W PAUL G. ALLEN SCHOOL Rachel Lin, Hunter Schafer

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Last Time

Theorem. (Chain Rule) For events $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n$, $\mathbb{P}(\mathcal{A}_1 \cap \cdots \cap \mathcal{A}_n) = \mathbb{P}(\mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_2 | \mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_3 | \mathcal{A}_1 \cap \mathcal{A}_2)$ $\cdots \mathbb{P}(\mathcal{A}_n | \mathcal{A}_1 \cap \mathcal{A}_2 \cap \cdots \cap \mathcal{A}_{n-1})$

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) **independent** if $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$

"Equivalently." $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$.

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on \mathcal{C} if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C}).$

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to **capture quantitative properties** of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is called its range/support $X(\Omega)$

Example. Number of heads in 2 independent coin flips $\Omega = \{HH, HT, TH, TT\}$

RV Example

20 balls labeled 1, 2, ..., 20 in a bin

- Draw a subset of 3 uniformly at random
- Let X = maximum of the 3 numbers on the balls
 - Example: X(2, 7, 5) = 7
 - Example: X(15, 3, 8) = 15

Poll: pollev.com/hunter312

A. 20^{3} B. 20 C. 18 D. $\binom{20}{3}$

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (Idea)

Flipping two independent coins $\Omega = \{HH, HT, TH, TT\}$

- X = number of heads in the two flipsX(HH) = 2X(HT) = 1X(TH) = 1X(TT) = 0
- What is the support $X(\Omega)$? $X(\Omega) = \{0, 1, 2\}$

What is the probability that X is 2? To answer this, we introduce the notion of a **probability mass function (PMF)** that describes this probability.

Pr(X = k)

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event $\{X = x\} \stackrel{\text{def}}{=} \{\omega \in \Omega \mid X(\omega) = x\}$ We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$ where $\mathbb{P}(X = x)$ is the probability mass function (PMF) of X

Random variables partition the sample space. $\sum \mathbb{P}(X = x) = 1$

RV Example

20 balls labeled 1, 2, ..., 20 in a bin

- Draw a subset of 3 uniformly at random
- Let X = maximum of the 3 numbers on the balls

What is Pr(X = 20)?

Poll: pollev.com/hunter312

A.
$$\binom{20}{2} / \binom{20}{3}$$

B. $\binom{19}{2} / \binom{20}{3}$
C. $\frac{19^2} / \binom{20}{3}$
D. $\frac{19 \cdot 18} / \binom{20}{3}$

10

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \le x$. $F_X(x) = \Pr(X \le x)$

Go back to 2 coin clips, where X is the number of heads

$$\Pr(X = x) = \begin{cases} \frac{1}{4}, & x = 0 \\ \frac{1}{2}, & x = 1 \\ \frac{1}{4}, & x = 2 \end{cases} \qquad F_X(x) = \begin{cases} 0, & x < 0 & 0.75 \\ \frac{1}{4}, & 0 \le x < 1 & \frac{1}{2} & 0.50 \\ \frac{3}{4}, & 1 \le x < 2 & 0.25 \\ 1, & 2 \le x & 0.00 & \frac{1}{1} & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation (

Expectation (Idea)

What is the *expected* number of heads in 2 independent flips of a fair coin?

Cumulative Disribution Function (CDF)

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads.

What is: Pr(X = 1) =

What is: Pr(X = 2) =

What is: Pr(X = k) =

Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads. What is E[X]?